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Rail irregularity is one of the main sources causing train–bridge random vibration. A new
random vibration theory for the coupled train–bridge systems is proposed in this paper.
First, number theory method (NTM) with 2N-dimensional vectors for the stochastic har-
monic function (SHF) of rail irregularity power spectrum density was adopted to deter-

rail irregularity samples, and the non-stationary rail irregularity samples were modulated
with the slowly varying function. Second, the probability density evolution method
(PDEM) was employed to calculate the random dynamic vibration of the three-
dimensional (3D) train–bridge system by a program compiled on the MATLABs soft-
ware platform. Eventually, the Newmark-β integration method and double edge difference
method of total variation diminishing (TVD) format were adopted to obtain the mean
value curve, the standard deviation curve and the time–history probability density
information of responses. A case study was presented in which the ICE-3 train travels on a
three-span simply-supported high-speed railway bridge with excitation of random rail
irregularity. The results showed that compared to the Monte Carlo simulation, the PDEM
has higher computational efficiency for the same accuracy, i.e., an improvement by 1–2
orders of magnitude. Additionally, the influences of rail irregularity and train speed on the
random vibration of the coupled train–bridge system were discussed.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic problems of the coupled train–bridge system in a high-speed railway are challenging. The random vibration
of the coupled train–bridge system is generally characterized by random dynamic excitations (e.g. earthquakes, wind load,
and rail irregularity, etc.), and random system parameters (e.g. train parameters, and structural parameters, etc.). Rail
irregularity is one of the primary sources causing the random vibration of train–bridge systems. However, the vibration
theory for a train–bridge system with random excitation and random structural parameters has not been systematically
built yet. To this end, the primary objective of this study is to investigate the random vibration caused by random rail
irregularity.
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For decades, extensive studies have been conducted in the field of the coupled train–bridge vibration for high-speed
railways. However, those studies have focused on the vibration excited by deterministic rail irregularity in the train–bridge
system [1–5]. It is well known that a limited number of rail irregularity samples acting on the train–bridge system, either
measured or artificially generated, is insufficient for characterizing the random train–bridge responses. Thus, it remains an
urgent need to further study the train–bridge systems using the random vibration theory.

The random dynamic analysis of coupled train–bridge systems has been long studied. In 1976, Fryba [6] first investigated
bridge random vibration caused by moving vehicles. Subsequently, researchers (e.g. Iwankiewicz [7], Sniady [8], Chu [9] and
Zibdeh [10]) in the field of random vibration of train–bridge systems commonly employed in their simulation work the
model of a load moving across the bridge, among which few considered the effect of rail irregularity. In fact, the random rail
irregularity should be considered in the calculation due to its importance in the coupled train–bridge system. To date,
several methods have been developed and applied for analyzing the random vibration of train–bridge systems (e.g. Monte
Carlo Method (MCM), Pseudo Excitation Method (PEM) [11], etc.). The MCM has been adopted to generate samples for
random track irregularities. Zeng [12] calculated the random response of a train–bridge system with hunting waves of the
bogie frame measured or generated with MCM. Zhai [13–15] and Xia [16–18] made significant contributions in the field of
coupled train-track-bridge system vibration, mainly with the method of MCM. Kardas-Cinal [19] obtained the spectral
distribution of the derailment coefficient using a nonlinear model of the railway vehicle–track system excited by random
rail irregularity. Lin [11,20] established the PEM for analyzing the random vibration of the coupled train–bridge system.
With virtual inputs, PEM could efficiently obtain the response power spectrum and the standard deviation on the basis of
the rail irregularity power spectrum. However, PEM cannot obtain the mean value of responses, and is therefore inadequate
for application in train–bridge systems. Thus, MCM is the only method generally applicable in probabilistic mechanics, but
the expensive computational costs required for sufficient accuracy also limits its use in engineering applications. Yet, it is
still commonly used to provide reference solutions for comparison with those obtained by more efficient methods tailored
to specific problems.

Li and Chen developed a generalized probability density evolution method (PDEM) [21–23], which contributed to the
solution of the linear and nonlinear random vibration analyses of a system with random inputs. Based on the fundamental
concepts of a random system, this method, as compared to MCM, could significantly improve the calculation efficiency, and
is able to solve the random vibration problems involving random excitations and stochastic structural parameters as well.
Inspired by this methodological framework, Yu and Mao [24] employed PDEM to analyze the vertical random vibration of
the coupled train–bridge system with random train parameters and rail irregularity, and drew some insightful conclusions.

The primary objective of this study was to establish a stochastic harmonic function of rail irregularity [25] from the rail
irregularity power spectrum density (PSD) by combining PDEM and number theoretical method (NTM). It was then used to
select representative points of spatial frequencies and phases [22,26] for calculating random vibration of the train–bridge
system, The calculation results including mean value curves, standard deviation curves and time-dependent probability
density information were obtained. Examples and applications were presented and discussed as well.
2. Train–bridge random dynamic equation and probability density evolution method

2.1. Random dynamic equation of the train–bridge system

2.1.1. 3D train–bridge model
For the vehicle model, the following assumptions were made:

(1) A train runs over the bridge at a constant speed.
(2) Each car consists of one body, two bogies, and four wheel sets, which are modeled as rigid bodies. The primary and

secondary suspension systems are modeled using linear springs and dampers.
(3) The degrees of freedom (dofs) of the car bodies and bogies are y;θ;ψ ; z, and φ, and the dofs of the wheel sets are y;θ,

and z.
(4) There are no sliding, climbing or derailment phenomena when the train is running on the rail, i.e., the wheels keep in

contact with the rail surface.

A dynamic interaction model of the 3D train–bridge system [20] with random rail irregularity as the excitation is shown
in Fig. 1, where an absolute coordinate system is adopted for the train–bridge system.

2.1.2. Equation for vehicle model
To highlight the random nature of rail irregularity as the load, first let ξq (q¼ 1;2;⋯;npt) be a random variable of rail

irregularity belonging to a random variable vector setΘ that contains random spatial frequencies ~Ω and phases ~ϕ discussed
in the next section. Specifically, ξq can be expressed as ξq ¼ ð ~Ωq;1;

~Ωq;2;⋯; ~Ωq;N ;
~ϕq;1;

~ϕq;2;⋯; ~ϕq;NÞAΘ, where npt is the total
number of representative samples, and N is the number of spatial frequencies and phases.

Without loss of generality, by referring to Refs. [20,27], the vehicle motion can be established using the Lagrange's
equations. With the assumptions discussed in Section 2.1 taken into account, the linearized dynamic equation of the vehicle
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system is expressed as

MV
€XV þCV

_XV þKVXV ¼ FV ðξq; tÞ (1)

where the subscript V denotes the vehicle, and FV ðξq; tÞ denotes the random rail irregularity generated by rail irregularity
power spectrum density with stochastic harmonic function (SHF) [25].

In fact, the dynamic equation of Eq. (1) contains nonlinear items and second-order items, e.g. the spring stiffness of
suspension system. However, these items are linearized or neglected in this study.

The mass matrix in Eq. (1) is expressed as MV ¼ diag½MV1;MV2;⋯;MVi;⋯;MVn�. The submatrices CVi and KVi have the
same form in the damping matrix CV and the stiffness matrix KV . The random external force impulse FV ðξq; tÞ is expressed as
FV ¼ column½FV1; FV2;⋯; FVi;⋯;FVn�. The response matrix XV is expressed as XV ¼ column½XV1;XV2;⋯;XVi;⋯;XVn�. The
Fig. 1. Dynamic interaction model of the 3D train–bridge system: (a) lateral view; (b) top view; and (c) front view.
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subscript n denotes the total number of the vehicular cars. The dynamic equation of ith car is expressed as:

MVi
€XViþCVi

_XViþKViXVi ¼ FViðξq; tÞ (2)

where i¼1,2,…,n.
The wheels of the vehicle are assumed to always remain in perfect contact with the rail surface, according to the wheel–

rail relationship expressed on Section 2.1.4, hence the degrees of freedom of the wheel sets are not directly mentioned in
Eq. (2). Thus, each car in Eq. (2) has 15 independent degrees of freedom (dof), and each car consists of one car-body and two
bogies that are denoted by the subscripts c; t1 and t2 respectively. The response vectors are expressed as follows:

XVi ¼ Xci Xt1 i Xt2i

h iT
(3a)

Xci ¼ Yci θci ψ ci Zci φci

h iT
(3b)

Xtji ¼ Ytji θtji ψ tji Ztji φtji

h iT
; j¼ 1;2 (3c)

Random rail irregularity is considered to be the random factor in Eq. (1). Referring to Ref. [20] and the definition
expressed in Section 2.1.1, as well as to the wheel–rail geometrical relationship in Eq. (9), the stochastic mechanical impulse
FViðξq; tÞ is expressed as

FViðξq; tÞ ¼ 0 Ft1iðξq; tÞ Ft2 iðξq; tÞ
h iT

(4a)

where

Ftj iðξq; tÞ ¼
X2
m ¼ 1

ky1ijYwijmðξq; tÞþcy1ij
_Ywijmðξq; tÞ

d21jðkz1ijθwijmðξq; tÞþcz1ij
_θwijmðξq; tÞÞ�h3iðky1ijYwijmðξq; tÞþcy1ij

_Ywijmðξq; tÞÞ
ð�1Þmþ1diðky1ijYwijmðξq; tÞþcy1ij

_Ywijmðξq; tÞÞ
kz1ijZwijmðξq; tÞþcZ1ij

_Zwijmðξq; tÞ
ð�1Þmþ1diðkz1ijZwijmðξq; tÞþcZ1ij

_Zwijmðξq; tÞÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
j¼ 1;2; (4b)

where Ywijmðξq; tÞ, θwijmðξq; tÞ, Zwijmðξq; tÞ are the displacements of the mth wheel set at the jth bogie in the ith car.

2.1.3. Dynamic equation for the bridge model
In the finite element model of the high-speed railway bridge, beams were used that exhibit no shear deformation (i.e.

Euler–Bernoulli theory) and satisfy the assumption of a rigid cross-section normal to the longitudinal axis. These
assumptions are adequate for this dynamic structural problem. The deformation on the bridge contains bending, shearing,
and torsion of the bridge deck, with the deformation of the track components (rail, ballast-less slab track, and concrete
seating slab) neglected.

By using the finite element method, the dynamic model of the coupled train–bridge system is shown in Fig. 2, and the
linearized system equation of the bridge structure is formulated as

Mb
€XbþCb

_XbþKbXb ¼ Fbðξq; tÞ (5)

where Mb, Cb and Kb are the mass matrix, the damping matrix, and the stiffness matrix of the bridge. The subscript b
denotes the bridge. The random parameter set ξq in the external random force Fbðξq; tÞ, which is effect on the bridge, is the
factor reflecting the interaction between vehicles and bridge.

Consistent with Ref. [20], the external random force Fbðξq; tÞ consists of horizontal forces, vertical forces, and twisting
moments, which are transferred by the wheel sets. The forces transferred by the wheel sets consist of two parts, i.e., one is
the gravity load distributed by the vehicle and the other is the stochastic interaction triggered by the rail irregularity. In
Fig. 2. Finite element model of train–bridge coupled system.
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detail, the external stochastic force is expressed as

Fbðξq; tÞ ¼
Xn
i ¼ 1

X2
j ¼ 1

X2
i ¼ 1

ðFyijmðξq; tÞΦy
ijmþFzijmðξq; tÞΦz

ijmþFθijmðξq; tÞΦθ
ijmÞ (6)

where Φy
ijm;Φ

θ
ijm and Φz

ijm correspond to the decomposition-index vectors, by which the internal lateral force, rolling
moment and vertical force of the mth wheel-pair in the jth bogie for the ith vehicle acting on the current beam element are
decomposed into nodal forces on the element. The external lateral force Fzijm; rolling moment Fθijm and vertical force Fyijm of
the mth wheel-set in the jth bogie for the ith vehicle acting on the current bridge beam element are decomposed into nodal
forces of the element. The forces are expressed as

Fyijmðξq; tÞ ¼ �mwijm
€Ywijlðξq; tÞþcy1ij

_δ
y
tjim

ðξq; tÞþky1ijδ
y
tjim

ðξq; tÞ

Fzijmðξq; tÞ ¼ gðMci=4þMtij=2þmwijmÞ�mwijm
€Zwijmðξq; tÞþcz1ij

_δ
y
tjim

ðξq; tÞþkz1ijδ
y
tj im

ðξq; tÞ

Fθijmðξq; tÞ ¼ h4iFwijmþeFzijm� Jwijm
€θwijmðξq; tÞþ2d21ic

z
1ij
_δ
θ
tj imðξq; tÞþ2d21ik

z
1ijδ

θ
tjimðξq; tÞ

8>>>><
>>>>:

(7)

where δ is the relative displacement of the springs between the wheel-sets and the bogies. It is expressed as

δytjimðξq; tÞ ¼ Ytji�h3iθtj iþð�1Þmþ1diψ tj i�Ywijmðξq; tÞ
δztjimðξq; tÞ ¼ Ztjiþ2ð�1Þmþ1diφtj i�Zwijmðξq; tÞ
δθtjimðξq; tÞ ¼ θtj i�θwijlðξq; tÞ

8>>><
>>>:

(8)
2.1.4. Wheel–rail relationship
Based on the above descriptions, a wheel–rail geometrical model is needed for the wheel/rail interaction relationship,

which contains the randomness of rail irregularity excitation. It is expressed as follows:

Ywjmðξq; tÞ
θwjmðξq; tÞ
Zwjmðξq; tÞ

2
664

3
775¼

YbijmðtÞ þhθbijmðtÞþYq;N;ijmðξq; tÞ
θbijmðtÞþθq;N;ijmðξq; tÞ

ZbijmðtÞ þ eθbijmðtÞþZq;N;ijmðξq ;tÞ

2
664

3
775 (9)

where h and e are the distances from the wheel to the center of a bridge gravity in the z-axis and y-axis respectively, and
YbijmðtÞ, θbijmðtÞ, and ZbijmðtÞ are the bridge displacements that correspond to the location of the wheel at the mth wheel-set
of the jth bogie in the ith car.

2.1.5. Vibration of the coupled train–bridge system
By considering the random rail irregularity excitation and referring to the train–bridge model in Refs. [20,27], equations

of motion for the coupled train–bridge system, composed of Eqs. (1) and (5), can be expressed in matrix form as follows:

MV 0
0 Mb

" #
€XV
€Xb

( )
þ

CV 0
0 Cb

" #
_XV
_Xb

( )
þ

KV 0
0 Kb

" #
XV

Xb

( )
¼

FV ðξq; tÞ
Fbðξq; tÞ

( )
(10)

The wheel-set degrees of freedom Ywijmðξq; tÞ, θwijmðξq; tÞ and Zwijmðξq; tÞ in Eq. (10) are not independent, which means
these variables are substituted by the wheel–rail relationship in Eq. (9).

Rewrite Eq. (10) in a unified way, one can get the dynamic motion

MV 0
0 M0

b

" #
€XV
€Xb

( )
þ

CV CVb

Cbv C0
b

" #
_XV
_Xb

( )
þ

KV KVb

KbV K0
b

" #
XV

Xb

( )
¼ FgþFΦðξq; tÞ (11)

whereM0
b, C

0
b and K0

b are the hybrid matrices associated with bridge structure matrices and shape function matrices with
the contribution of wheel-sets forces. KVb and CVb are the hybrid matrices associated with bridge deflection and wheel-sets
forces. These matrices are written as

M0
b ¼Mbþ

Xn
i ¼ 1

X2
j ¼ 1

X2
m ¼ 1

ðmwijmΦ0y
ijmΦ

0yT
ijmþmwijmΦ0z

ijmΦ0zT
ijmþ JwijmΦθ

ijmΦθT
ijmÞ (12a)

K0
b ¼Kbþ

Xn
i ¼ 1

X2
j ¼ 1

X2
m ¼ 1

ðky1ijΦ
0y
ijmΦ

0y T
ijm þkz1ijΦ0z

ijmΦ0zT
ijmþd21ik

z
1ijΦθ

ijmΦθT
ijmÞ (12b)

KVb ¼KT
bV ¼ KVb1;KVb2;⋯;KVbn½ �T (12c)
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KVbi ¼ 0;Ki
t1b;K

i
t2b

h iT
;Ki

tjb ¼ �

ky1ijΦ
0yT
ijm

d21ik
z
1ijΦθT

ijm�h3ik
y
1ijΦ

0yT
ijm

ð�1Þjdiky1ijΦ
0yT
ijm

kz1ijΦ0zT
ijm

ð�1Þjdikz1ijΦ0zT
ijm

2
66666666664

3
77777777775
; j¼ 1;2 (12d)

Φ0y
ijm ¼Φy

ijmþh4iΦθ
ijm; Φ0z

ijm ¼Φz
ijmþeΦθ

ijm (12e)

The matrices C0
b, CVb and Cbv have the same form as K0

b, KVb and KbV . By replacing Kwith C and kwith c, we can obtain the
matrices C0

b, CVb and Cbv.
Fg represents the deterministic excitation vector due to gravitational load on the cars. FΦðξq; tÞ is the three-dimensional,

random non-stationary excitation vector caused by the lateral, rotational, and vertical rail irregularities that are generated
with stochastic harmonic function mentioned in Section 2. The excitation forces Fg and FΦðξq; tÞ can be expressed as

Fg ¼ 0
Xn
i ¼ 1

X2
j ¼ 1

X2
i ¼ 1

gðMci=4þMtij=2þmwijmÞΦz
ijm

2
4

3
5
T

(13)

FΦðξq; tÞ ¼KFUwðξq; tÞþCF
_Uwðξq; tÞþMF

€Uwðξq; tÞ (14)

where the random rail irregularity matrices _Uwðξq; tÞ and €Uwðξq; tÞ have the same form as Uwðξq; tÞ in Eq. (14) except for the
time derivative. The response matrix Uwðξq; tÞ is expressed as

Uwðξq; tÞ ¼ ½Uw1;Uw2;⋯;UwN�T ; Uwi ¼ ½U11
wi ;U

12
wi ;U

21
wi ;U

22
wi �T

Ujm
wi ¼ Yq;N;ijmðξq; tÞ θq;N;ijmðξq; tÞ Zq;N;ijmðξq; tÞ

h iT
(15a)

Similarly, matrices KF and MF in Eq. (14) are rewritten in Eqs. (15b)–(15d). The damping matrix CF has the same form as
the stiff matrix KF . The subscripts are i¼ 1;2;⋯;n,j¼ 1;2, and m¼ 1;2.

KF ¼ KFV KFb
� �T

; KFV ¼ diag KFV1;KFV2;⋯;KFVn½ �

KFVi ¼
0 0 0 0

K11
FVi K12

FVi 0 0

0 0 K21
FVi K22

FVi

2
64

3
75; Kjm

FVi ¼
2ky1ij �2ky1ijh3i ð�1Þmþ12ky1ijdi 0 0

0 2kz1ijd
2
1i 0 0 0

0 0 0 2kz1ij ð�1Þmþ12kz1ijdi

2
6664

3
7775
T

(15b)

KFb ¼ KFb1;KFb2;⋯;KFbn½ �; KFbi ¼ ½K11
Fbi;K

12
Fbi;K

21
Fbi;K

22
Fbi�

Kjm
Fbi ¼ �ky1ijðΦ

y
ijmþh4iΦθ

ijmÞ �d21ik
z
1ijΦθ

ijm �kz1ijðΦz
ijmþeΦθ

ijmÞ
h i

(15c)

MF ¼ 0 MFb
� �T

; MFb ¼ MFb1;MFb2;⋯;MFbn½ �; MFbi ¼ ½M11
Fbi;M

12
Fbi;M

21
Fbi;M

22
Fbi�

Mjm
Fbi ¼ �mwijmðΦy

ijmþh4iΦθ
ijmÞ � JwijmΦθ

ijm �mwijmðΦz
ijmþeΦθ

ijmÞ
h i

(15d)

2.2. Stochastic harmonic functions of rail irregularity

2.2.1. Sample simulation and representative point selection
After building the dynamic train–bridge model, the key point of next step is the generation of random rail irregularity

samples. As the time–history curves, rail irregularity samples are generated for numerical simulation of the train–bridge
system. It is common to use the rail irregularity samples generated by numerical method for simulation rather than those
measured according to the actual condition. In this study, a stochastic harmonic function (SHF) [25] was employed to
generate random rail irregularity from the rail irregularity power spectrum density that contains random spatial fre-
quencies, phases, and amplitudes that are determined by spatial frequencies. With this method, power spectrum density of
the generated rail irregularity samples is precisely equivalent to the original one [22].

Track alignment irregularity, track vertical profile irregularity and track cross-level irregularity are expressed as yNðΘ; xÞ,
θNðΘ; xÞ and zNðΘ; xÞ respectively, which are shown in Fig. 3. As mentioned in Ref. [22],ΩI

Θ;i and ϕ
I
Θ;i (i¼ 1;2;⋯;N, I¼ y;u; z)

are considered as the spatial frequency and phase angle of rail irregularity respectively, and they are evenly distributed at
the interval value of ΩðpÞ

i�1;Ω
ðpÞ
i

� i
and in period of 0;2πð � independently. Here, Θ is considered to be a random variable

vector set, and ΩðpÞ
i is the dividing frequency that meets the interval domainΩloΩðpÞ

1 oΩðpÞ
2 o⋯oΩðpÞ

N�1oΩu, Ωu is the
upper cut-off spatial frequency and Ωl is the lower cut-off spatial frequency. The power spectrum density values of rail
irregularity change exponentially within the domain of the cut-off frequencies, a feature that is different from the
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earthquake spectrum density and the wind load spectrum density. Therefore, it is important to ensure that ΩðpÞ
i is credible

for the simulation. The rail irregularity samples that generated by SHF are expressed as

yNðΘ; xÞ ¼
XN
i ¼ 1

AyðΩy
Θ;iÞ cos ðΩ

y
Θ;ixþϕy

Θ;iÞ

θNðΘ; xÞ ¼
XN
i ¼ 1

AuðΩu
Θ;iÞ cos ðΩu

Θ;ixþϕu
Θ;iÞ

zNðΘ; xÞ ¼
XN
i ¼ 1

AzðΩz
Θ;iÞ cos ðΩz

Θ;ixþϕz
Θ;iÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

(16)

where amplitude AIðΩI
Θ;iÞ is a function of ΩI

Θ;i ; I ¼ y;u; z, and N is the number of components.
The greater the number N is, the higher accuracy of the power spectral density function (PSDs) of stochastic harmonic

function process has, as compared to the target power spectral density [28]. The minimum value of N used for the frequency
truncation, which ensures enough precision for calculation, could be N¼10 with stochastic harmonic function, according to
Ref. [28]. In this study, the number N¼50 was chosen, which would be accurate enough in generating rail irregularity
samples.

SIðΩI
Θ;iÞ is set as PSDs of rail irregularity (see Ref. [24]) and the amplitude AIðΩÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SIðΩI

Θ;iÞΔΩI
Θ;iπ�1

q
, I¼ y;u; z. Thus,

Eq. (16) becomes

yNðΘ; xÞ ¼
XN
i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SyðΩy

Θ;iÞΔΩ
y
Θ;iπ�1

q
cos ðΩy

Θ;ixþϕy
Θ;iÞ

θNðΘ; xÞ ¼
XN
i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SuðΩu

Θ;iÞΔΩu
Θ;iπ�1

q
cos ðΩu

Θ;ixþϕu
Θ;iÞ

zNðΘ; xÞ ¼
XN
i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SzðΩz

Θ;iÞΔΩz
Θ;iπ�1

q
cos ðΩz

Θ;ixþϕz
Θ;iÞ
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(17)

where ΩI
Θ;i; I ¼ y;θ; z is the spatial frequency of rail irregularity. The relationship between this frequency and circular fre-

quency ω is ωI
Θ;i ¼ΩI

Θ;iv¼ 2πv=λIΘ;i, where v is the train speed and λ is the rail irregularity wavelength. The PSDs of sto-
chastic process yNðΘ; xÞ, θNðΘ; xÞ and zNðΘ; xÞ are precisely equal to the original PSD [22] when all these conditions are met.

Furthermore, to obtain the representative samples of random function which contain probability information, the
number theoretical method (NTM) [29,30] with 2N dimensional spatial vectors is employed to select random spatial fre-
quency points that were used to generate the random track irregularity samples.

A 2N dimensional hypercube point set (gp set, one mentioned in NTM) is generated by using the square root method of
sequence:

χq;i ¼ q
ffiffiffiffiffiffiffi
ϖi

p� �
(18)

where q¼ 1;2;⋯;npt ; i¼ 1;2;⋯;2N.χq;iA 0;1ð Þ is the evenly scattered point set of a 2N dimensional hypercube, ϖi are dif-
ferent prime numbers, Uf g shows the decimal part of q

ffiffiffiffiffiffiffi
ϖi

p
, and npt is the total number of representative rail irregularity

samples.
Researchers [22] have suggested that the variable ϖi in Eq. (18) be a prime number equal to the ith (i¼1,2,…,2N) prime

number in turn, and the prime numbers are presented in a prime number sequence at first. The discrete representative
Fig. 3. Random geometric track irregularities simulated with stochastic harmonic functions: (a) abridged general view of railway rail irregularity; (b) track
vertical profile irregularity; (c) track cross-level irregularity; and (d) track alignment irregularity.
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points are shown as

~Ωq;i

� ��1
¼ ΩðpÞ

i�1

� ��1
þ ΩðpÞ

i�1

� ��1
� ΩðpÞ

i

� ��1
	 


χq;i

~ϕq;i ¼ 2πχq;iþN

8><
>: (19)

where q¼ 1;2;⋯;npt , i¼ 1;2;⋯;N and j¼ 1;2;⋯;N.
In particular, ΩðpÞ

i in Eq. (19) is the dividing frequency which is met in the intervalsΩloΩðpÞ
1 oΩðpÞ

2 o⋯oΩðpÞ
N�1oΩu,

~Ωq;i is the ith adjusted random spatial frequency of qth random vector sets, and ~ϕq;i is the iþNth adjusted random phase
angle of qth random vector set.

The random vector set ξq is expressed as ξq ¼ ð ~Ωq;1;
~Ωq;2;⋯; ~Ωq;N ;

~ϕq;1;
~ϕq;2;⋯; ~ϕq;NÞAΘ, and its joint probability density

function is considered to be pΘðξqÞ, whose initial probability assignment is Pq ¼ 1=npt .
Substituting Eq. (19) into Eq. (17) yields

~yq;Nðξq; xÞ ¼
XN
i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Syð ~Ω

y
q;iÞΔ ~Ω

y
q;iπ�1

q
cos ð ~Ωy

q;ixþ ~ϕ
y
q;iÞ

~θq;Nðξq; xÞ ¼
XN
i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Syð ~Ω

u
q;iÞΔ ~Ω

u
q;iπ�1

q
cos ð ~Ωu

q;ixþ ~ϕ
u
q;iÞ

~zq;Nðξq; xÞ ¼
XN
i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Syð ~Ω

z
q;iÞΔ ~Ω

z
q;iπ�1

q
cos ð ~Ωz

q;ixþ ~ϕ
z
q;iÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

(20)

where q¼ 1;2;⋯;npt .

2.2.2. Rail irregularity time domain transformation and non-stationary modulation
Rail irregularity cannot generally be assumed to be stationary for a train crossing a bridge, and the amplitude of rail

irregularity on the bridge is normally smaller than the amplitude in the subgrade layer. On such a basis, it was assumed that
the PSD values of rail irregularity on the bridge were c¼ 0:7 times lower than those in the subgrade layer.

Let ΦIðxÞðI¼ y;θ; zÞ be a slowly varying sinusoidal modulation function for track alignment irregularity, track vertical
profile irregularity, and track cross-level irregularity, respectively. As mentioned in Ref. [20], the transformation function is
given as

ΦIðxÞ
ðI ¼ y;θ;zÞ

¼

0:5ð1þ ffiffiffi
c

p Þþ0:5ð1� ffiffiffi
c

p ÞsinðπL�1
0 ðxþ1:5L0ÞÞ �L0rxo0ffiffiffi

c
p

0rxoL

0:5ð1þ ffiffiffi
c

p Þþ0:5ð1� ffiffiffi
c

p ÞsinðπL�1
0 ðx�L�0:5L0ÞÞ LrxoLþL0

1 other

8>>>><
>>>>:

(21)

where L0 is the length of the transition section before the train enters the bridge, and L is the total length of bridge.
Based on the conversation relationship of x¼vt, rail irregularity samples generated by SHF can be expressed as time-

domain curves that are shown as follows:

Yq;Nðξq; tÞ ¼ΦyðvtÞ ~yq;Nðξq; vtÞ
θq;Nðξq; tÞ ¼ΦuðvtÞ ~θq;Nðξq; vtÞ
Zq;Nðξq; tÞ ¼ΦzðvtÞ~zq;Nðξq; vtÞ

8>><
>>: (22)

2.3. Solution of the dynamic equation using probability density evolution method

Without loss of generality, the dynamic train–bridge equation in Eq. (11) can be rewritten as

M €XðΘ; tÞþC _XðΘ; tÞþKXðΘ; tÞ ¼ FðΘ; tÞ (23)

To express the random factors more clearly, the random variable Θ was replaced with the variable set ξq in Eq. (23),
where ξqAΘ; q¼ 1;2;⋯;npt . Random rail irregularity is considered to be the only random excitation source in Eq. (23);
Further, the dynamic train–bridge system is also assumed to be a conservative system. Therefore, the randomness of the
dynamic equation comes from the random parameter set Θ [23].

In that case, for conciseness and greater clarity, Eq. (23) can be rewritten as

M €Xðξq; tÞþC _Xðξq; tÞþKXðξq; tÞ ¼ Fðξq; tÞ (24)

The steps in the calculation of the dynamic train–bridge system with PDEM are listed as follows:

Step 1 Select the representative points in the random parameter space Θ. The sample set of representative random
spatial frequencies that are used to generate random track irregularity samples is filtered with NTM (Eqs. (18) and (19)).
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The initial probability of each parameter set is denoted as Pq, and the total probability of train–bridge system satisfies:

Xnpt

q ¼ 1

Pq ¼
Xnpt

q ¼ 1

Z
ξq
pΘðξqÞdξ¼

Z
[ npt

q ¼ 1ξq
pΘðξqÞdξ¼

Z
ΩΘ

pΘðξqÞdξ¼ 1 (25)

The initial conditions are partially discretized correspondingly as

pUΘðu;ξq; tÞjt ¼ t0 ¼ δðu�u0ÞpΘðξq; tÞjt ¼ t0 ¼ δðu�u0ÞPq (26)

where δðUÞ is a Dirac delta function.

Step 2 Perform the deterministic structural analysis of the train–bridge system in Eq. (23) within the prescribed
Θ¼ ξqðq¼ 1;2;…;nptÞ using the Newmark�β step-by-step integration method and output the random responses
matrices Xðξq; tÞ, _Xðξq; tÞ and €Xðξq; tÞ. The samples of rail irregularity are generated within the prescribed Θ¼ ξq.
Step 3 Replace the random responses Xðξq; tÞ, _Xðξq; tÞ and €Xðξq; tÞ with the variable U. The variable U is rewritten as

Uðξq; tÞ ¼ Xðξq; tÞT _Xðξq; tÞT
h iT

(27)

The train–bridge dynamic equation in Eq. (23) can be rewritten as

_Uðξq; tÞ ¼ΑUðξq; tÞþQ ðξq; tÞ (28)

where

Α¼ 0 I
�M�1K �M�1C

	 

; Q ðξq; tÞ ¼

0
M�1Fðξq; tÞ

" #

The component form of U is

_Ulðξq; tÞ ¼
X2N
j ¼ 1

ΑljUjðξq; tÞþQlðξq; tÞ ðl¼ 1;2;⋯Þ (29)

Based on the Reynold transformation theorem and its related derivation, the generalized probability density evolution
equation (GPDEE) [23] is obtained as follows:

∂pUΘðu; ξq; tÞ
∂t

þ _Ulðξq; tÞ
∂pUΘðu; ξq; tÞ

∂u
¼ 0 (30)

where _Ulðξq; tÞ is the time rate of the dynamic train–bridge response UlðtÞ with Θ¼ ξq
n o

.

Step 4 The GPDEE of the train–bridge random system Eq. (30) is solved together with Eq. (24). The bilateral difference
method with the functionality of total variation diminishing (TVD) format [22] is used to solve the partial differential
equation Eq. (30) and obtain the solution pUΘðu; ξq; tÞ.
The PDF of the dynamic train–bridge system response is given by

pUðu; tÞ ¼
Z
UΘ

pUΘðu; ξq; tÞdξ (31)

More details are referred to reference [22].
3. Numerical examples and validation

3.1. General information

A three-dimensional (3D) dynamic coupled train–bridge system was established to evaluate the interaction models in
high-speed railways, as shown in Fig. 1. The bridge was composed of three simply supported beams. Each beam is a
pre-stressed concrete box girder spanning 32 m and the box section is shown in Fig. 2. Each beam is modeled as 20 spatial
finite beam elements. Referring to the coordinate system built in Fig. 1, one of the bridge deck ends is fixed in the x; y; z, and
θx directions, and at the other end y; z, and θx are constrained. The piers of the bridge are assumed to be rigid and are
neglected in the finite element model. The mechanical parameters of the bridge are listed in Table 1.

The German ICE-3 train is composed of eight passenger cars of which the 1st and 8th are locomotives. The mechanical
parameters of the cars are shown in Table 2.

The MATLABs package, a commercial data-analysis and visualization tool, was used to compile the train–bridge random
vibration program. This program was based on PDEM with random rail irregularity as the excitation source. Comparisons
between the current method and MCM are also presented and discussed.
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3.2. Verification of computational efficiency and accuracy

In this study, rail irregularity is considered the only excitation source for the train–bridge vibration system in the ana-
lysis. For better understanding of the dynamic system, various combinations of rail irregularity excitation were used in the
simulation. Four different combinations were considered, including vertical profile track irregularity, cross-level track
irregularity, track alignment irregularity and the combined track irregularities.

Previous research work has mainly focused on the deterministic analysis of the coupled train–bridge vibration [2,15,16],
which is not adequate for revealing the physical mechanisms of the random vibration of the train–bridge system. It has been
proved that responses of the system have considerable differences when only one or a few samples of measured or
simulated rail irregularity excitation are used. Previous studies did not systematically investigate random vibration of the
train–bridge system, although the classic MCM is appropriate but comes with huge computational cost. In this study, the
MCM was used to verify the reliability of other competing methods.

The PDEM has higher efficiency than MCM for the same accuracy level and was used to calculate the random vibration of
the train–bridge system. The computed responses of the system in the vertical direction are presented in Figs. 4–6. As for
Figs. 4–6, the 3D probability density surfaces shown in the (a) figures are the time–history curves for the bridge acceleration,
vehicle displacement, and vehicle acceleration. The sectional area of each time step is always equal to 1 because there is no
Table 1
Calibrated mechanical properties of the bridge section.

Item Unit Value

m (mass per unit length) kg/m 22,197.2
EIz (lateral bending stiffness) GPa m4 2963.8
EIy (vertical bending stiffness) GPa m4 377.4
I0 ¼ Iyþ Iz (the polar inertia) m4 96.8
GIt (the torsional stiffness) GPa m4 289.8

Table 2
Major parameters of the vehicle used in the present study.

Parameters for the ith vehicle Unit Tractor Trailer

Mci (mass of body) kg 48,000 44,000
Jcθi (roll mass moment of body) kg m2 115,000 100,000
Jcψ i (yaw mass moment of body) kg m2 2,700,000 2,700,000
Jcφi (pitch mass moment of body) kg m2 2,700,000 2,700,000
Mtij (mass of bogie) kg 3200 2400
Jtθij (roll mass moment of bogie) kg m2 3200 2400
Jtψ ij (yaw mass moment of bogie) kg m2 6800 6800
Jtφij (pitch mass moment of bogie) kg m2 7200 7200
mwijm (mass of wheel-pair) kg 2400 2400
Jwijk (roll mass moment of wheel-pair) kg m2 1200 1200

kz1ij (vertical stiffness of 1st suspension system, per side) kN/m 1,040,000 700,000

ky1ij (lateral stiffness of 1st suspension system, per side) kN/m 3,000,000 5,000,000

kz2ij (vertical stiffness of 2nd suspension system, per side) kN/m 400,000 300,000

ky2ij (lateral stiffness of 2nd suspension system, per side) kN/m 480,000 560,000

cz1ij (vertical damping of 1st suspension system, per side) kN s/m 50 50

cy1ij (lateral damping of 1st suspension system, per side) kN s/m 30 30

cz2ij (vertical damping of 2nd suspension system, per side) kN s/m 60 60

cy2ij (lateral damping of 2nd suspension system, per side) kN s/m 30 25

Lci (full length of vehicle) m 24.775 24.775
si (half-distance of two bogies) m 17.375/2 17.375/2
di (half-distance of two wheel-pairs) m 1.25 1.25
d1i (half-span of the 1st suspension system) m 1.00 1.00
d2i (half-span of the 2nd suspension system) m 0.95 0.95
bijk (half-span of the wheel-pair) m 1.496/2 1.496/2
e (lateral distance from wheel-set to bridge center) m 2.50 2.50
h (vertical distance from rail to bridge center) m 1.80 1.80
h1i (height of body above 2nd suspension system) m 0.80 0.80
h2i (height of 2nd suspension system above bogie) m 0.30 0.20
h3i (height of bogie above wheel-pair) m �0.05 0.10
h4i (height of wheel-pair above bridge centroid) m 2.30 2.30
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probability loss enduring the whole process. The probability density contours of these responses are displayed in the
(b) figures. The curves for mean and standard deviation values are displayed in the (c) and (d) figures, respectively.

3.2.1. Bridge acceleration
In Fig. 4(a) and (b), the probability density of bridge acceleration at the mid-span is concentrated at the initial distance of

0.0 m where the train starts to enter the bridge, and then spreads gradually until reaching a maximum at each wave crest.
After the train leaves the bridge, the probability density returns to the initial position. This phenomenon is consistent with
the actual condition in the coupled train–bridge vibration.

The mean value curve in Fig. 4(c) and standard deviation curve in Fig. 4(d) show that the vertical bridge acceleration at
mid-span is greatly influenced by the random vertical profile track irregularity, and that the largest coefficient of variation
for the acceleration in Fig. 4 reaches 16.92 percent. The coefficient of variation for bridge acceleration is calculated as the
standard deviation in Fig. 4(d) divided by the average value at each peak in Fig. 4(c).

The MCM is considered as a method of validation for the high efficiency of PDEM at the same accuracy level. The
statistical result of 5000 samples generated by MCM is close to the result calculated by PDEM with 300 representative
samples. The maximum deviation is within 2.11 percent at the distance of 220 m that corresponds to the exact time point
when train leaves the bridge. However, the computation time of the MCM is almost 18 times more than that of PDEM. This
demonstrates that the computational efficiency of PDEM is much higher than that of MCM, for the same accuracy level.

3.2.2. Vehicle displacement and acceleration
Due to the random vertical profile track irregularity, the responses of vehicle showed greater randomness than those of

bridge structure. The response curves in Figs. 5 and 6 show the response of vehicle at a train speed of 240 km/h. The peak
areas in Figs. 5(a) and 6(a) are mainly distributed within the distance from 0 to100 m, which implies that the train runs
more stably on the bridge than on the embankment.

The mean value curve of vertical vehicle displacement at the center of gravity is shown in Fig. 5(c). The curve decreases at
the beginning and rises between 0 m and 100 m because of the coupled train–bridge vibration. The standard deviation
curves in Fig. 5(d) show similar trend as the mean value curves in Fig. 5(c), however, their mechanisms are different from
each other. The mean value curves in Fig. 5(c) descends due to the action of vehicle gravity when running across the bridges,
while the standard deviation curves in Fig. 5(d) descends due to the modulation of the rail irregularity that has been
introduced to take into account the fact that rail irregularity on the bridge is generally smaller than that on the embank-
ment. Therefore, when train runs on the bridges, the standard deviation of vertical car-body displacement is smaller than
that on the subgrade. The ratio of minimum and maximum values of the curves in Fig. 5(d) is 0.62, close to the modulation
rate 0.7.
Fig. 4. Random vertical acceleration histories at the bridge midspan under random vertical profile track irregularity (v¼240 km/h): (a) 3D probability
density evolution surface; (b) probability density contour curve; (c) mean value curve; and (d) standard deviation curve.



Fig. 6. Random vertical acceleration histories at the gravity center of the first car-body under random vertical profile track irregularity (v¼240 km/h):
(a) 3D probability density evolution surface; (b) probability density contour curve; (c) mean value curve; and (d) standard deviation curve.

Fig. 5. Random vertical displacement histories at the gravity center of the first car-body under random vertical profile track irregularity (v¼240 km/h):
(a) 3D probability density evolution surface; (b) probability density contour curve; (c) mean value curve; and (d) standard deviation curve.
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The vertical vehicle acceleration curves at the center of gravity shown in Fig. 6 are consistent with those in Fig. 5. The
MCM was used to test the efficiency and precision of PDEM. The curves obtained using PDEM and MCM matched well, with
the former using 300 representative samples and the latter using 5000 samples. The maximum deviation is within 1.92
percent. This again proves that the PDEM has higher efficiency than the MCM for the same accuracy level.

3.3. Analysis of vibration response and influence of speed

Bridge resonance is a common concern in the vibration of a train–bridge system. It is detrimental when the bridge
resonance occurs at the time a train is running across the bridge at a particular speed. To study the random vibration of the
train–bridge system at different train speeds, four different types of track irregularity were used in the calculation, i.e.,
vertical profile track irregularity (vertical only), cross-level track irregularity (rotational only), track alignment irregularity
(alignment only), and the three track irregularities combined (all combined). The train speed values were divided into 13
levels ranging between 60 km/h and 420 km/h with an increment of 30 km/h for each level.
Fig. 7. Trend analysis of vertical acceleration at the gravity center of the first car-body at speeds 60–420 km/h: (a) mean value curve and (b) standard
deviation curve.

Fig. 8. Probability density function of vertical acceleration at the gravity center of the first carriage-body at the time train runs across the bridge mid-span.
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3.3.1. Analysis of responses for the train
The computed maximum accelerations of vehicles in the vertical direction are shown in Figs. 6 and 7. Vertical and lateral

accelerations show a similar trend: with the increase of train speed, the mean and standard deviation values of the max-
imum vehicle acceleration increase within certain range of speed.

The trend curves in Fig. 7 show that the acceleration with all track irregularity samples combined is clearly greater than
that in other track conditions at each speed level. Nevertheless, the vertical dynamic response of the train system caused by
the vertical profile track irregularity is nearly 300 percent higher than that in the other two conditions (see Fig. 7).

The probability density function of vertical acceleration of the first vehicle-body gravity center, when the train is running
across the mid-span of the bridge's first-span at the speed from 60 km/h to 420 km/h, is shown in Fig. 8. The peak of
probability density function of vertical vehicle acceleration is close to zero and the curvilinear shape of each curve is
approximately symmetric. Furthermore, the probability distribution scope expands gradually and the peak value of each
probability density decreases gradually with the increase of train speed. The results indicate that the vehicle response
becomes larger when the train speed increases. This is consistent with the observations discussed in Fig. 7.
3.3.2. Dynamic analysis of bridge responses
The problem of vehicle–bridge interaction has been studied extensively, especially the dynamic characteristics of the

bridge changing with the increase of train speed. However, different studies were focused on varying structures, e.g. the
long-span bridge [18,31–34], prestressed concrete continuous beam bridge [35–37], prestressed concrete simple supported
beam-bridge [1,16,38–42] and so on. Particularly, this paper proposed the dynamic analysis of simply supported beam
bridge under different train speeds, and the computed results of bridge responses at the mid-span in vertical directions are
shown in Figs. 9 and 10.

Different types of rail irregularity were adopted to study their influences on the train–bridge system vibration in this
study. As shown in Figs. 9 and 10, except for the gravitational load of the vehicles, vertical profile rail irregularity is the main
source of excitation that makes greater influence on the deflection and acceleration of the bridge in the vertical direction, as
compared with the other types of track irregularities. Nevertheless, the mean values of the maximum bridge acceleration
are almost consistent in the close-up details in Figs. 9(b) and 10(b) at the speed v¼300 km/h.
Fig. 9. Trend analysis on the vertical deflection at bridge midspan: (a) vertical deflection curve of each speed level; (b) mean value curves; and (c) standard
deviation curves.



Fig. 10. Trend analysis of vertical acceleration at bridge midspan: (a) vertical acceleration curve of each speed; (b) mean value curves; and (c) standard
deviation curves.
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The maximum average of vertical bridge acceleration curves and the vertical bridge deflection curves, which are shown
in Figs. 9 and 10, increase with increasing train speed, reach the first peak at a speed of 180 km/h and the highest peak near
a speed of 300 km/h, after which the values decrease and level off at higher speed. The reason for this phenomenon may be
that the forced vibration frequency of vehicle is close to the natural vibration frequency of bridge at a particular speed. That
is, the forced vibration frequency of vehicle is about 4.82 Hz, which is close to the natural vibration frequency of bridge,
5.12 Hz, at a speed of 300 km/h, and the dynamic response of bridge is amplified because of resonance. To be more specific,
for more detail, the mean value curve of vertical bridge deflection corresponding to the speed value ranging from 270 km/h
to 330 km/h is plotted in Fig. 9(b) with a speed increment of 5 km/h. As shown in Fig. 9(b), the resonance may occur at the
speed of 310 km/h. At this speed, the forced vibration frequency is close to the bridge's natural frequency. On the whole, the
faster the train speed is, the greater the vertical bridge response will be, within certain range of speed.

The time–history curves in Figs. 9(a) and 10(a) at speeds from 60 km/h to 420 km/h show that the vertical bridge
acceleration and deflection have many high-frequency components at lower speeds. This finding seems to be related to the
forced vibration frequency of the train.

The vibration of the train–bridge system exhibits a random dynamic pattern when the vehicles travel across the bridge.
This means that the maximum bridge response is considered to be random due to the random rail irregularity. Therefore,
results obtained from deterministic calculations cannot accurately reveal the random vibration characteristics of the train–
bridge system.

As compared to the results documented in the literature [31,38,40], the trends of dynamic characteristic curves of bridge
at the mid-span section corresponding to different train speeds, either shown as curves in Figs. 9 and 10 or reported
previously in the literatures, are considered to be essentially consistent. It can be seen that the mean value curves for
dynamic bridge responses in Figs. 9(b) and 10(b) increase with increasing train speed within a certain speed range.
Nevertheless, there also exist some small differences among individual results because the bridge parameters and vehicle
parameters used in this study are different from those found in previous studies. In addition to the mean value curves, the
trend of standard deviation curves for dynamic responses is also important as it reflects the random distribution of max-
imum responses. As shown in Fig. 9(c), the standard deviation curves of vertical bridge deflection increase with increasing
train speed, and reach the first peak at a speed of 180 km/h and the greatest peak near a speed of 300 km/h. This means the
maximum bridge response at the peaks is distributed over a wider range due to the resonance.

Furthermore, as compared the mean value curves and standard deviation curves in Figs. 9 and 10, the results show that
the mean curves almost overlap with each other, whereas the standard deviation curves distinct significantly from each
other as influenced by four different types of track irregularity. Without considering working condition of the three track
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irregularities combined (all combined), the influence of vertical profile track irregularity (vertical only) on the vertical bridge
response at the mid-span section is the greatest while the influence of the other two, i.e., cross-level track irregularity
(alignment only) and track alignment irregularity (rotational only), significantly diminished. Therefore, in comparison with
deterministic analysis approaches, the random vibration theory as PDEM may contribute to revealing the mechanisms of
random vibration of the coupled train–bridge system.
4. Conclusions

A 3D coupled train–bridge random vibration system is established using PDEM and executed in the MATLABs platform.
The outputs include the time–history distribution of probability density evolution information, average value curves and
standard deviation curves of the responses, and some discussions are made. Some conclusions are listed as follows:

(1) Stochastic harmonic function (SHF) and number theory method (NTM) are applicable and reliable methods for gen-
erating the random rail irregularity samples. Apart from the vehicle loading, vertical profile track irregularity is the main
influencing factor causing the vertical random vibration of the train–bridge system.

(2) As compared to the MCM, the PDEM seems to be more efficient for the same accuracy level in the vibration calculation
of train–bridge interaction, with an improvement of 1–2 orders of magnitude.

(3) The responses of the train–bridge system increases with increasing train speed within a certain speed range, and the
speed of 330 km/h seems to be a detrimental one for this particular system.
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